Weak itinerant ferromagnetism in YCo$_9$Si$_4$

H. Michora,* M. El-Hagarya,1, S. Özcana, A. Horyna,2, E. Bauera, M. Reissnera, G. Hilschera, S. Khmelevskyib, P. Mohnb, P. Roglc

aInstitut für Festkörperphysik, Technische Universität Wien, Wiedner Hauptstr. 8–10, Wien A—1040, Austria
bCenter for Computational Materials Science, T.U. Wien, Wien A—1040, Austria
cInstitut für Physikalische Chemie, Universität Wien, Wien A—1090, Austria

Received 30 December 2004

Abstract

Weak itinerant ferromagnetism in YCo$_9$Si$_4$ below about 25 K is studied by means of magnetisation, specific heat, and resistivity measurements. Single-crystal X-ray refinements at room temperature reveal a fully ordered distribution of Y, Co and Si atoms within the tetragonal space group I4/mcm isostructural with LaCo$_9$Si$_4$. The latter exhibits itinerant electron metamagnetism with an induced moment of about 1μ_B/f.u. above 6 T, whereas YCo$_9$Si$_4$ exhibits a spontaneous magnetisation $M_0 \approx 12 \text{Am}^2/\text{kg}$ at 2 K which corresponds to an ordered moment of about 1.6μ_B/f.u. indicating weak itinerant ferromagnetism.

© 2005 Elsevier B.V. All rights reserved.

PACS: 71.20.–b; 75.40.–s; 75.50.–y

Keywords: YCo$_9$Si$_4$; Itinerant magnetism; Specific heat

Recent interest on weak itinerant ferromagnetism e.g. in ZrZn$_2$ [1] in the context with quantum critical phenomena motivated the search for new materials showing weak itinerant ferromagnetism or being close to a ferromagnetic (FM) instability. An interesting system in this respect is the solid solution LaCo$_{13-x}$Si$_x$, where ferromagnetism vanishes near the stoichiometric composition LaCo$_9$Si$_4$ [2], where full translational symmetry (space group I4/mcm) is confirmed by single-crystal X-ray diffractometry [3]. LaCo$_9$Si$_4$ is a strongly exchange enhanced Pauli paramagnet and exhibits an itinerant electron metamagnetic phase transition at about 3.5 T for $H \parallel c$ and 6 T for $H \perp c$, which is the lowest value ever found for rare-earth intermetallic compounds [3]. In this paper,
we report on low-temperature measurements on the isostructural and isoelectronic compound YCo$_9$Si$_4$ which was initially reported in Refs. [4,5] to be FM with $T_C \simeq 848$ K.

Polycrystalline samples of YCo$_9$Si$_4$ were synthesized by induction melting of pure elements (Y 3N, Co 4.5N, Si 6N) under protective argon atmosphere and subsequent annealing at 1050°C for 1 week. The phase purity and composition has been verified by means of electron microprobe analysis. A small crystal ($\sim 50 \mu$m3 extracted from polycrystalline material was used to determine the crystal structure by means of single-crystal X-ray diffraction ($R_F = 2\%$) revealing a fully ordered distribution of Y, Co and Si atoms with the LaFe$_9$Si$_4$-type [6] with a single rare-earth site, three cobalt sites and again a single Si site. The lattice parameters are $a = 7.754(1)$ Å and $c = 11.487(1)$ Å at room temperature (see Ref. [3] for details). Crystallographic order is also corroborated by a reasonably low residual resistivity $\rho_0 = 7 \mu\Omega\text{cm}$ (see below).

Temperature- and field-dependent magnetisation measurements $M(T, H)$ on YCo$_9$Si$_4$ depicted in Fig. 1 as an Arrott plot M^2 versus H/M reveal weak ferromagnetism below about 25 K with an extrapolated spontaneous magnetisation $M_0 \simeq 12$ Am2/kg at 2 K (see the dashed line in Fig. 1) corresponding to $1.6 \mu_B$/f.u. and a longitudinal susceptibility in the FM regime, $\chi_0 \sim 0.25$ Am2/kgT, determined from the μ_0H/M axis intercept of the dashed line extrapolation in Fig. 1. The Curie-temperature T_C is around 25 K in reasonable agreement with specific heat and transport anomalies (see below).

The temperature-dependent resistivity $\rho(T)$ of YCo$_9$Si$_4$ shown in Fig. 2 reveals a significant change of slope around about 25 K which is associated with the onset of ferromagnetism. Below about 15 K, in the FM state, $\rho(T)$ is well described by a power-law behavior $\rho(T) = \rho_0 + AT^\alpha$ (see the solid line in Fig. 2) with $\rho_0 = 7 \mu\Omega\text{cm}$, $A = 0.176 \mu\Omega\text{cm}/K^{-\alpha}$ and $\alpha = 1.72$. The corresponding fit for nearly ferromagnetic LaCo$_9$Si$_4$ (dashed line in Fig. 2) yields $\rho_0 = 16 \mu\Omega\text{cm}$, $A = 0.085 \mu\Omega\text{cm}/K^{-\alpha}$ and $\alpha = 1.9$ indicating a spin fluctuation (Fermi liquid) regime for the latter compound.

The specific heat of YCo$_9$Si$_4$ and (for comparison) LaCo$_9$Si$_4$ is shown in Fig. 3 as C/T vs. T revealing for both compounds a relatively large electronic Sommerfeld value γ close to 200 mJ/mol K2 and in the case of YCo$_9$Si$_4$ a small somewhat broadened anomaly associated with the second-order phase transition towards weak itinerant ferromagnetism with a jump $\Delta C/T$ of the order of 100 mJ/mol K2 in approximate agreement with the Stoner–Wohlfarth model (see e.g. Ref. [7]) yielding $\Delta C/T_c = M_0^2/\chi_0 T_C^2 \simeq 70$ mJ/mol K2. In the case of exchange enhanced Pauli paramagnetic LaCo$_9$Si$_4$, the value of $\gamma \simeq 200$ mJ/mol K2 can be compared with the density of states

![Fig. 1. Arrott plot M^2 vs. H/M of isothermal magnetization data of YCo$_9$Si$_4$.](image1)

![Fig. 2. Temperature-dependent resistivity $\rho(T)$ of YCo$_9$Si$_4$ and LaCo$_9$Si$_4$; dashed and solid lines are fits, see text.](image2)
obtained from ab initio electronic structure calculations, \(N(E_F) \sim 19 \) states/eV f.u., revealing a spin-fluctuation mass enhancement \(\lambda_{\text{spin}} \sim 3.3\) [3].

For \(\text{YCo}_9\text{Si}_4\) band calculations have been performed in the same manner as described in Ref. [3] for \(\text{LaCo}_9\text{Si}_4\) yielding practically the same picture with respect to the Co d-bands as for \(\text{LaCo}_9\text{Si}_4\) and within the numerical accuracy the same density of states at the Fermi level. The spin-fluctuation mass enhancement \(\lambda_{\text{spin}}\) is thus very similar in \(\text{YCo}_9\text{Si}_4\) and \(\text{LaCo}_9\text{Si}_4\). Band calculations at the experimental lattice constant yield a FM ground state for both compounds, which is experimentally confirmed only for \(\text{YCo}_9\text{Si}_4\), while \(\text{LaCo}_9\text{Si}_4\) shows a paramagnetic ground state and metamagnetism. In analogy to the conclusions drawn for \(\text{LaCo}_9\text{Si}_4\) we expect for \(\text{YCo}_9\text{Si}_4\) also in the FM state the largest moments of about 0.3–0.4\(\mu_\text{B}/\text{Co}\) to be at the 16k Co-sites and significantly smaller moments at the 4d and 16l Co-sites.

Fig. 3. Temperature-dependent specific heat as \(C/T\) vs. \(T\) of \(\text{YCo}_9\text{Si}_4\) and \(\text{LaCo}_9\text{Si}_4\).